

AUTOMOTIVE CURRENT SENSOR HC6H500-S

CE Datasheet

Page 1/5

Introduction

The HC6H Family is for use on the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HC6H family gives you the choice of having different current measuring ranges in the same housing.

Features

- Open Loop transducer using the Hall effect
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range from 200 A up to 800 A
- Maximum rms primary admissible current: defined by busbar to have T° < + 150°C
- Operating temperature range: 40°C < T° < + 125°C
- Output voltage: full ratio-metric (in gain and offset)
- Compact design for PCB mounting.

Advantages

- Excellent accuracy
- Very good linearity
- · Very low thermal offset drift
- Very low thermal gain drift
- Wide frequency bandwidth
- Noinsertionlosses
- Very good ratio size/current range

Automotive applications

- Starter Generators
- Converters
- Inverters
- Drives.

Principle of HC6H Family

The open loop transducers use an Hall effect integrated circuit. The magnetic induction B, contributing to the rise of the Hall voltage, is generated by the primary current I_p to be measured. The control current I_p is supplied by a current source i.e. battery or generator (Fig. 1).

Within the linear region of the hysteresis cycle, B is proportional to:

$$I_{P}(B) = constant(a) * I_{P}$$

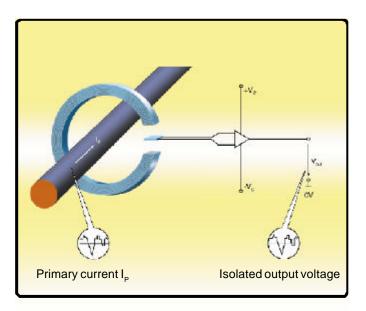
The Hall voltage is thus expressed by:

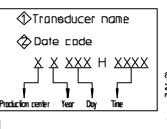
 $V_{H} = (K/d) * I * constant (a) * I_{P}$

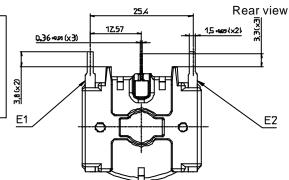
Except for I_{p} , all terms of this equation are constant. Therefore:

 V_{H} = constant (b) * I_{P}

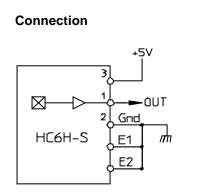
The measurement signal $\rm V_{_{H}}$ amplified to supply the user output voltage or current.

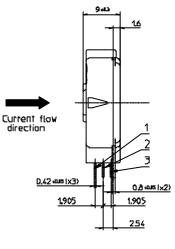


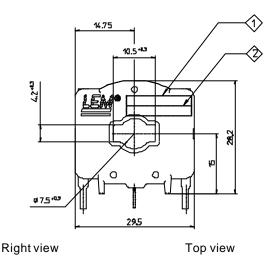

Fig. 1: Principle of the open loop transducer



Dimensions HC6Hxxx-S family (in mm. 1mm = 0.0394 inch)


Secondary connection


Terminals	Designations
3	Supply voltage + 5 V DC
1	V _{out}
2	Ground
E1, E2	Ground (*)

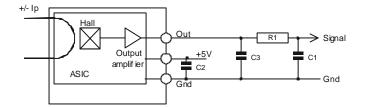


(*) Only 1 of these 2 pins could be connected

Bill of materials

- Plastic case
- Magnetic core
- Pins

SPS GF 30 FeSi alloy


Copper alloy tin

23 g

platted (lead free)

Mass

Electronic schematic

Remarks

General tolerance ±0.2 mm

• $V_{OUT} > \frac{V_c}{2}$ when I_p flows in the direction of the arrow.

Power supply decoupling capacitor: C2 = 47 nF EMC protection capacitor : C3 = 4.7 nF

Optional: High frequency signal noise filter: R1 > 100 ohms C1 = defined according to the system frequency bandwidth

070420/1

Absolute maximum ratings (not operating)

Parameter	Symbol	Unit	Specification	Consitions
Maximun peak primary current (not operating)	P maxi	A	Defined by busbar to have $T^{\circ} \leq 150^{\circ}C$	
Primary nominal DC or rms current	PN	А	Defined by busbar to have $T^{\circ} \leq 150^{\circ}C$	
Maximun supply voltage (not operating)	V _{C maxi}	V	7	
Secondary maximum admissible power	P _{S maxi}	mW	150	
Ambient operating temperature	TA	°C	- 40 < T _A < 125°C	
Ambient storage temperature	Ts	°C	- 40 < T _S < 125°C	
Electrostatic discharge voltage	V ESD	V	2000	JESD22-A114-B
Maximum admissible vibration	γ	m.s ⁻²	(2)	see note (2)
Rms voltage for AC isolation test	V _d	V	2000	IEC 60664-1

Operating characteristics

	Symbol	Unit	Specification			Conditions		
	Symbol	Unit	Mini	Typical	Maxi	Conditions		
Electrical Data								
Primary current, measuring range	I _{PM}	А	-500	-	500	@ - 40°C < T° < 125°C		
Supply voltage	V _c	V	4.75	5.00	5.25	@ - 40°C < T° < 125°C		
Output voltage (Analog)	V _{out}	V	V _{OUT} = V	V _C /5 ∗ (2.5 +	0.004 × I)	@ - 40°C < T° < 125°C		
Sensitivity	G	V/A	0.00392	0.004	0.00408	@ T _A = 25°C		
Offset voltage	Vo	V	2.482	2.5	2.518	@ $V_{C} = 5.00 \text{ V}; T_{A} = 25^{\circ}\text{C}; I_{P} = 0 \text{ A}$		
Current consumption	l _c	mA	-	15	20	@ - 40°C < T° < 125°C; 4.75 V < V _C < 5.25 V		
Load resistance	RL	KΩ	2	-	-			
Output internal resistance	R _{OUT}	Ω	-	-	10			
			Perform	nance Data				
Sensitivity error	e _G	%	-2.0	±0.7	2.0	@ $T_A = 25^{\circ}C$, $V_C = 5.00$ V; Gth = 0.004 V/A		
Electrical offset current	I _{OE}	А	-2.5	±1.1	2.5	@ $V_{\rm C} = 5.00 \text{ V}; T_{\rm A} = 25^{\circ}\text{C}$		
	VOE	mV	-10	±4.4	10	$\mathbf{v}_{\rm C} = 3.00 \text{v}, \mathbf{n}_{\rm A} = 23 \text{C}$		
Magnetic offset current	I _{OM}	А	-2.5	±1.5	2.5	@ After excursion to $\pm I_{P}$; $T_A = 25^{\circ}C$		
	V _{OM}	mV	-10	±6	10			
Temperature coefficient of	TCI _{OE}	mA/°C	-35	±15	35	@ - 40°C < T° < 125°C: VC = 5.00 V		
	TCV _{OE}	mV/°C	-0.14	±0.06	0.14			
Temperature coefficient of G	TCG	%/°C	-0.04	±0.02	0.04	@ - 40°C < T° < 125°C; $V_{c} = 5.00 \text{ V}$		
Linearity error	٤	% I _P	-1.0	±0.5	1.0	@ I_P ; $V_C = 5.00 \text{ V}$, $T_A = 25^{\circ}C$		
Response time	t _r	μs	-	8	15	@ di/dt = 50 A/µs; I _T = 400 A		
Frequency bandwidth (1)	BW	kHz	20	-	-	@ -3 dB		
Output voltage noise peak-peak	V _{nop-p}	mV	-	8	12	@ T _A = 25°C; 0 Hz < f < 1 MHz		
Output voltage noise rms	V _{norms}	mV	-	2.5	3.5	@ T _A = 25°C; 0 Hz < f < 1 MHz		

Notes: (1) Small signal only to avoid excessives heating of magnetic core

(2) Depending on the customer application's set up.

Page 4/5

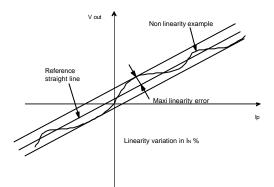
PERFORMANCE PARAMETERS DEFINITIONS

Sensitivity:

The Transducer's sensitivity **G** is the slope of the straight line $V_{out} = f(I_p)$, it must establish the relation: $V_{out}(I_p) = V_C/5 (G^* I_p + V_C)$

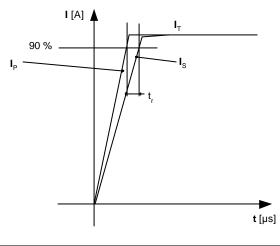
Offset voltage :

Is the output voltage when the primary current is null. The ideal value of V_o is V_c/2. So, the difference of V_o - V_c/2 is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis.


Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{P maxi}$.

Linearity:


Is the maximum positive or negative discrepancy with a reference straight line $V_{\text{outr}} = f(I_p)$.

Unit: linearity (%) expressed with full scale of IP maxi-

Response time (delay time) t_r :

Is the time between the primary current signal and the output signal reach at 90 % of its final value

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear I_c amplifier sensitivity.

Offset drift:

The error of the offset in the operating temperature \mathcal{E} Offset is the relative variation of the offset in the temperature considered with the initial offset at 25°C. The offset temperature coefficient TCV_{OE} (TCl_{OE}) in the operating temperature is the slope off \mathcal{E} Offset = **f** (T).

Sensitivity drift:

The error of the sensitivity in the operating temperature sensitivity Error is the relative variation of the sensitivity in the temperature considered with the initial sensitivity at 25° C sensitivity temperature coefficient TCG.

Typical:

Theorical value or usual accuracy recorded during the production.

Environmental test specifications

Name	Standard	Conditions					
Thermal shocks	IEC 60068 Part 2-14	T° - 40°C to 125°C /1000 cycles not connected					
Low T ^o operation at mini supply voltage	IEC 60068 Part 2-1	T° - 40°C / 1000 H supply voltage = 4.75 V					
High T° operation at maxi supply voltage	IEC 60068 Part 2-2	T° 125°C / 1000 H supply voltage = 5.25 V					
Temperature humidity bias	IEC 60068 Part 2-3	T° 85°C / 85 % RH/ 1000 H					
Mechanical Tests							
Vibration	IEC 60068 Part 2-64	see note (2) page 4					
Drop test	IEC 60068 Part 2-29	Height 750 mm concrete floor each directions					
EMC Test							
Electrostatic discharge	JESD22-A114-B	Applied voltage = $\pm 2 \text{ kV}$ pin to pin number of discharge = 1					
Rms voltage for AC isolation test	IEC 60664 Part 1	2 kV, 50 Hz, 1 min					
Bulk current injected- radiated immunity	ISO 11452 Part 4						

Page 5/5